Nonlinear Stability of Periodic Traveling Wave Solutions of the Generalized Korteweg-de Vries Equation

نویسنده

  • Mathew A. Johnson
چکیده

In this paper, we study the orbital stability for a four-parameter family of periodic stationary traveling wave solutions to the generalized Korteweg-de Vries (gKdV) equation ut = uxxx + f(u)x. In particular, we derive sufficient conditions for such a solution to be orbitally stable in terms of the Hessian of the classical action of the corresponding traveling wave ordinary differential equation restricted to the manifold of periodic traveling wave solution. We show this condition is equivalent to the solution being spectrally stable with respect to perturbations of the same period in the case when f(u) = u (the Korteweg-de Vries equation) and in a neighborhood of the solitary wave if f(u) = u for some integer p ≥ 1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The tanh method for solutions of the nonlinear modied Korteweg de Vries equation

In this paper, we have studied on the solutions of modied KdV equation andalso on the stability of them. We use the tanh method for this investigationand given solutions are good-behavior. The solution is shock wave and can beused in the physical investigations

متن کامل

Transverse Instability of Periodic Traveling Waves in the Generalized Kadomtsev-Petviashvili Equation

In this paper, we investigate the spectral instability of periodic traveling wave solutions of the generalized Korteweg-de Vries equation to long wavelength transverse perturbations in the generalized Kadomtsev-Petviashvili equation. By analyzing high and low frequency limits of the appropriate periodic Evans function, we derive an orientation index which yields sufficient conditions for such a...

متن کامل

Some traveling wave solutions of soliton family

Solitons are ubiquitous and exist in almost every area from sky to bottom. For solitons to appear, the relevant equation of motion must be nonlinear. In the present study, we deal with the Korteweg-deVries (KdV), Modied Korteweg-de Vries (mKdV) and Regularised LongWave (RLW) equations using Homotopy Perturbation method (HPM). The algorithm makes use of the HPM to determine the initial expansion...

متن کامل

On the Exact Solution for Nonlinear Partial Differential Equations

In this study, we aim to construct a traveling wave solution for nonlinear partial differential equations. In this regards, a cosine-function method is used to find and generate the exact solutions for three different types of nonlinear partial differential equations such as general regularized long wave equation (GRLW), general Korteweg-de Vries equation (GKDV) and general equal width wave equ...

متن کامل

Forced oscillations of a damped‎ ‎Korteweg-de Vries equation on a periodic domain

‎In this paper‎, ‎we investigate a damped Korteweg-de‎ ‎Vries equation with forcing on a periodic domain‎ ‎$mathbb{T}=mathbb{R}/(2pimathbb{Z})$‎. ‎We can obtain that if the‎ ‎forcing is periodic with small amplitude‎, ‎then the solution becomes‎ ‎eventually time-periodic.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Math. Analysis

دوره 41  شماره 

صفحات  -

تاریخ انتشار 2009